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Homodyne light scattering was used to measure a component of the velocity difference §v(£) on
small length scales £ in a vertical Taylor-Couette cell with a rotating inner cylinder. In addition,
large-scale flow patterns were recorded photographically. Both types of measurements revealed the
presence of rolls, out to very large Reynolds number R. The small-scale measurements of the mean
value of §v(£) exhibit a periodicity that appears near the onset of chaos. Various scaling properties

of the flow were investigated.
PACS number'(s): 47.27.Cn

INTRODUCTION

Fluid flow in a Taylor-Couette cell with the inner cylin-
der rotating and the other cylinder fixed, will go through
several transitions before it becomes turbulent [1]. The
large-scale features of the flow are studied by adding
Kalliroscopic flakes to the fluid. These small platelets are
aligned by the local shear, producing patterns that are
readily photographed. Another widely used method for
probing the local velocity field is laser Doppler velocime-
try (LDV), which measures the time dependence of v(t),
the streamwise velocity component at a point. Here we
describe experiments using a third method, photon ho-
modyne correlation spectroscopy, or HCS. Like LDV it
requires the seeding of the fluid with small particles that
scatter light. But rather than recording the velocity ver-
sus time, HCS measures, at an arbitrarily chosen point,
a time average (6v(£)) of a component év({) of the in-
stantaneous velocity difference §v(£) between two closely
spaced points separated by a distance £. Here the velocity
component §v(¢) is the projection of §v(¢) in the direc-
tion of the momentum transfer vector q of the scattered
light.

This experiment compares small-scale velocity differ-
ences with the large-scale roll structure and modulations
of it that are visible to the eye. We will concentrate on
the variation of (6v(¥4,y)) with vertical position (y) in
the cell. In most of our experiments £ is 0.2 mm, which
is much smaller than the spacing between the rolls that
appear when the Reynolds number R exceeds a critical
value, R, = 125. Here R is defined as R = Vd/v, where
d is the gap distance between the inner and the outer
cylinder, V' the rotation speed of the inner cylinder, and
v the kinematic viscosity. Unless stated otherwise, it will
be assumed that £ has the value ¢ = 0.2 mm, and we will
use the simplified notation (§v(y)) = (6v(£ = 0.2 mm,y)).
Our principal findings are now summarized.

Even when R/R. is only slightly greater than unity,
(6v(y)), on a scale £ = 0.2 mm, is periodic in y and
has the same wavelength as the wavy vortex flow seen in
Fig. 1. However, when R reaches the value at which the
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velocity becomes chaotic (R/R. ~ 11 ), (6v(y)) develops
new maxima, as may be seen in Fig. 2 when R/R, =
11.4. The spacing of these new maxima is the same as
the roll spacing. This secondary periodicity, as well as
primary oscillations, persist to R/ R, = 91.3. This may be
seen in Fig. 2, where (6v(y)) is plotted (in dimensionless
units defined below) as a function of height y in the cell.
It has long been known that a large-scale roll structure
exists in Couette flow out to R/R. as large as 1600 [2].
The present measurements establish that this periodicty
exists at small scales as well. In fact, the amplitude of
these oscillations in (§v(y)), normalized by the height-
averaged mean value, shows no decrease with increasing
R, even when the system is in the turbulent vortex flow
regime (R/R. > 22). In this regime the power spectrum
S(w) of the local velocity v(t) has no sharp frequency
components, but rather is broad banded [3, 4].

An initial motivation for this experiment was the ex-
pectation that at sufficiently large values of R and suffi-
ciently small £, the flow would become turbulent in the
Kolmogorov sense. According to this model of fully de-
veloped turbulence [5], (6v(£)) is proportional to £¢, with
¢ = 1/3 in the inertial range. The smallest eddy size for
which this type of scaling is expected to hold is the dissi-
pative scale, 1, which decreases as R is increased [6]. In
a Couette cell with a much smaller aspect ratio than the
one used here, this type of scaling was indeed observed
[7], with R/R, of the order of 1000 and ¢ in the range
0.2 to 1.2 mm. The geometry of that cell was very dif-
ferent from the one used here. In that work no attempt
was made to probe the variation of (§v(4,y)) as a func-
tion of the vertical position of observation y. In the cell
used here the ¢ dependence of (§v(4,y)) was also studied.
Power-law behavior was not observed; rather { was seen
to be a function of £ and R (see Fig. 6). This effective
exponent decreased to a very small value when £ dropped
below approximately 0.3 mm. The approach of ¢ to zero
(rather than the expected value of unity [8]) at small £
has also been seen in grid-generated turbulent flow [9,
10], in turbulent pipe flow at large R, and in Rayleigh-
Bénard convection [11]. It is possible that in all these
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experiments, this effect could be an artifact linked with
the finite radius of the laser beam. For reasons to be
given below, we believe that it is not an artifact and may
be an important new effect.

-

- R/R¢=1.42
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FIG. 2. The dependence of the dimensionless velocity
(Avo(y)) as a function of height in a Taylor-Couette cell at dif-
ferent Reynolds numbers R/R. ranging from 1.42 to 91.3. The
arrows indicate the new local maxima which are described in
the text.

FIG. 1. Flow pattern observed in a
Taylor-Couette cell with the inner cylinder
rotating at different Reynolds numbers R/R.
ranging from 1.34 to 96.4.

EXPERIMENTS

Figure 3 shows the experimental arrangement. Only
the inner cylinder was rotated with a rotational frequency
w. The gap between the two cylinders was filled with wa-
ter and now seeded with uniform polestyrene particles of
diameter 0.106 um. The radius of the inner cylinder is
R; = 46.88 mm and the radius of the outer cylinder is
R, = 52.45 mm. A laser beam, traveling in the hor-
izontal direction, is focused with a lens of focal length
f1 = 10 cm. The beam waist diameter was 0.10 mm and
was located at the center of the gap. (The diameter of
the beam is defined as the width where the intensity has
decreased by a factor 1/e from the intensity at the center
of the beam.) Figure 4(a) shows the scattering geom-

FIG. 3. Experimental arrangement for the HCS Couette
flow measurements. The focal lengths of the lenses are f1 = 20
cm and f2 = 10 cm. S is an adjustable slit, PD the photode-
tector, and LS a He-Ne laser.
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(a)

FIG.4. Top view of flow cells at different scattering geom-
etry. Here ko is the incident, k4 is the scattered wave vector,
and q = ks — ko the momentum transfer vector. The scat-
tering geometry in (a) was used in the vertical measurements
of the correlation function, and geometry (b) was used in the
measurements at one fixed position with different slit widths.

etry, which is chosen to probe the velocity components
in a “near” radial direction. This geometry was used in
the measurements of the velocity fluctuations as a func-
tion of height. One reason to choose this geometry is
the radial symmetry of the problem. Due to the velocity
shear between the inner and the other cylinder, we ex-
pect the velocity difference (6v(l,y)) to be smaller along
the radial than the azimuthal direction. This will imply
a longer decay time of the correlation function when q
is directed in radial than in azimuthal direction. With
our setup the limitation at high Reynolds numbers is the
dead time of our photodiode which is about 200 ns.

The scattering geometry in Fig. 4(b) was used for
convenience in the measurement of the £ dependence of
(6v(4,y)) because it is easier to align than the geome-
try in Fig. 4(a). The aspect ratio of the Couette cell is
Kk = h/(R2 — R1) = 19.9, and the height h of the inner
cylinder is 11.1 cm. The top and bottom of the inner
cylinder were not closed off to prevent fluid flow at the
ends. The seed particles scatter light, and a lens of fo-
cal length fo = 10 cm is used to form an 1:1 image of
the scattering volume, centered onto a slit of adjustable
width.

The scattered light falls on a RCA model SPCM-100-
PQ photodiode positioned 35 cm from the slit, and the
signal from the photodiode is fed into a Malvern corre-
lator, model K7025. All the optics, including the laser,
are mounted on a computer-controlled translation stage,

1
g(r) =1+ 4/0 /60(2/€)(1 — r/£) cos(gbvT) P(6v,T) [

where P(6v,r) is the probability that two points in the
fluid, separated with a distance r, have a velocity differ-
ence 6v. Recall that 6v is the projection of the veloc-
ity difference 6v(l) in the direction of the momentum
transfer vector q = ko — ks. The factor, cos(gévT),
is the Doppler beating term from particle pairs, and
(2/€)(1 — r/€) [9] is the probability density of particle
pairs separated by a distance r within a total length 2.
Of necessity the photodetector is of finite area, and hence
one must integrate over it. This integration introduces
the last factor Jy(x)/z, where = koar /2R in the corre-
lation function. This is a coherence factor, and will de-

J1 (koa'l‘/2R)
koar /2R

which enables movement of the laser beam in the ver-
tical direction with a total displacement of 4 cm. The
measurements were started with the laser beam posi-
tioned 4.0 cm from the bottom of the inner cylinder and
the beam is moved vertically in steps of 0.038 mm be-
tween each measurement of the correlation function. A
thousand correlation functions [therefore 1000 values of
(6v(y))] are measured in each full vertical scan.

The flow pattern was visually observed, using Kalliro-
scope particles, at each value of R at which (6v(y)) was
measured. These particles are small platelets that are
aligned by the local flow field and reflect light. Because
the Kalliroscopic flakes must be removed and replaced
with the smaller seed particles needed to measure (6v(y)),
it was not possible to relate visually observed structure
with the light scattering measurements. The reason is
that specifying R does not uniquely specify the position
and the spacing of the rolls [4,12]. Thus there was no
way to determine if the maxima in (6v(y)) occurred at
the vertical positions of outflow or inflow.

LIGHT SCATTERING

In the homodyne correlation spectroscopy technique
one measures the intensity correlation function of the
scattered light, given by

o(r) = < /A I(t)dA /A , I(t+r)dA’> / < /A I(t)dA>2,

(1)

where the integrations are over the detector area. When
light is scattered from a particle moving in a fluid with
velocity v, the frequency is Doppler shifted. This shift
is v - (ks — ko), where kq and ko are the wave vectors
of the scattered and the incident light, respectively. The
magnitude of ko is ko = n2w /A, where n is the index of
refraction of the fluid and A the vacuum wavelength. It
turns out that the only important contribution to the cor-
relation function will be from beating terms of all particle
pairs [9]. For a detector of circular area g(7) becomes [9,
13]

2
] dévdr , (2)

[
crease with the separation distance of the particle pairs
[13]. It is important to note that spatial coherence effects
are much more important in these experiments than in
the case of pure diffusion, because the shape of the corre-
lation function depends on the size and the shape of the
detector. In the case of light scattering by diffusing par-
ticles, this spatial averaging reduces the amplitude of the
time-dependent part of the intensity correlation function
g(7), but it does not change its functional form [14].
The decay time of the correlation function G(r) =
g(7) — 1 is inversely proportional to the characteristic
velocity difference (6v(4,y)) on a length scale I. For the
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discussion to follow, it is useful to define two character-
istic times: 70 = [ G(r)dr, and 7; /2 which is given by
G(711/2) = 1/2. It is also convenient to define two charac-
teristic dimensionless velocities, {Avg(y)) = (groRaw) ™!
and (Avy/3(y)) = (gr1/2Raw) ™"

The function G(7) is also dependent on the param-
eters £ and R. It follows from Eq. (2) that if P(év,r)
has the scaling form, P(6v,r) = (6v(r,y)) " 1Q(6v/
(6v(r,y))), and if (Sv(r,y)) ~ 77, then G(r) will have
the scaling form

G(q,7,¢,y) = G(g{bv(£))T,y). (3)

It is assumed here that the coherence factor Ji(z)/z in
the square brackets of Eq. (2) is constant.

DISCUSSION

Figure 2 shows the measured dimensionless velocities
(Avg(y)). These measurements were made with £ = 0.2

mm and at the indicated Reynolds numbers, R/R., which
range from 1.42 to 91.3. The critical Reynolds number
was measured to R. = 125 + 5 by visualization exper-
iment. It is important to understand the experimental
procedure. Each time the rotation frequency of the inner
cylinder was changed, the driving motor was turned off
and remained so until the fluid became quiescent. Then
the inner cylinder was rapidly accelerated to the desired
frequency. Attention is again drawn to the fact that the
spatial periodicity of (Avg(y)) is approximately the same
as the roll spacing seen in Fig. 1.

The small-scale noise in (Avg(y)), which is of the or-
der of 7% of its value, corresponds to the statistical noise.
The large-scale fluctuations which are more frequently at
large heights are an artifact due to reflection problems.
This noise is independent of the different rotation veloci-
ties of the inner cylinder, and appears at the same value
of y for all measurements.

The number of azimuthal waves in the cell will depend
on the early history of a run. The measurements were re-
peated many times with no effort made to keep the initial
ramp-up rate precisely the same. Yet we almost always
saw the same pattern by eye and by homodyne measure-
ment. Moreover, the main results presented in this paper
would seem to be independent of the precise state being
investigated. Figure 1 shows the observed flow patterns,
recorded at approximately the same values of R/R, as
in the HCS measurements of Fig. 2. For R/R, = 1.34
(Fig. 1) the system is in the wavy vortex flow regime,
the distance between the azimuthal waves being approx-
imately 1.0 cm. The periodicity of (Avg(y)) is almost
the same, even though the two experiments are prob-
ing the system on quite different spatial scales. When
the rotation frequency is increased further, the period-
icity of (Awvg(y)) changes, as seen at Reynolds numbers
R/R. = 2.85 and R/R, = 5.70 in Fig. 2. Note that the
wavelength of the large-scale periodicity increases on in-
creasing the Reynolds number. This increase is also seen
in the visualization experiments. At R/R. = 5.40 the
periodicity a in Fig. 1 is 1.5 cm, whereas ¢ = 1.8 cm in
the corresponding HCS measurement with R/R, = 5.70.
This is surely the result of the fact that the preparation of

the states in these experiments was slightly different, in
spite of the fact that R/R. was approximately the same.

At R/R. = 11.4 new maxima in (Avy(y)) appear at the
positions indicated by the arrows in Fig. 2. This new fea-
ture occurs at a Reynolds number close to R/R, = 10.1,
which is where the transition to modulated wavy vortex
flow occurs [12, 3] with a cell similar in construction to
ours, but which has closed boundary conditions. (As a
check, we also performed experiments in the same cell
as the one used here but with closed boundary condi-
tions, and observed a secondary maximum at Reynolds
number R/R, =11.0.) On the other hand, the transition
displayed in Fig. 2 also occurs at a value of R/R, which
is close to R/R,=12, the dimensionless Reynolds number
at which broadband chaotic fluctuations first appear [3,
4]. The amplitude of these new maxima becomes equal
to the amplitude of the primary maxima in (Avy(y)) as
R increases. A closer inspection of the flow visualization
experiment in Fig. 1 also shows small-scale spatial fluc-
tuations at R/R, = 10.7. At R/R. = 91.3 (Fig. 5), pri-
mary and secondary maxima are seen to become indistin-
guishable. This small-scale periodicity persists deep into
the turbulent regime, where the wavy vortex fluctuations
have vanished. The modulated wavy vortex flow is well
known to disappear at Reynolds numbers above about 19,
but the chaotic broadband component will be present at
all higher Reynolds numbers. Our new maxima do not
disappear at Reynolds number higher than 19 but are
present deep into the turbulent vortex flow regime. This
implies that the new maxima are not correlated with the
modulated wavy vortex flow. These experiments suggest
to us that the amplitude of the broadband component of
the power spectrum S(w) of the local velocity field v(t),
measured by others (3, 4], will vary periodically with y.
Presently we have no measurements to support this spec-
ulation.
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FIG. 5. Open circles: The dependence of the average ve-
locity {(6vo)) on the Reynolds number in a Taylor-Couette
cell. Closed circles: The dependence of the standard devia-
tion o on the Reynolds number. Solid lines have slopes of
1.25. The inset shows log;q [((6110))/(R/Rc)1'25] as a func-
tion of log,oR/R. (open circles), and log,, [d/(R/RC)l'zs] as
a function of log,,R/R. (closed circles).
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Though the large-scale structure of the flow is not
uniquely determined by R, we nonetheless have found
that the y average of (6vo(y)) (which we write as {(6vg)))
is smoothly dependent on the Reynolds number, i.e., on
the mean flow velocity U = R;§2. This is seen in Fig. 5
(open circles), which is a double logrithmic plot of {(6vo)),
as well as its standard deviation, as a function versus R.
The latter quantity is designated as o and is shown in
Fig. 5 (closed circles). Similar curves were obtained when
the average velocity ((6vo)) was replaced by ((6v/2)). Asa
guide for the eye we have also shown in the figure lines of
slope a = 1.25. This slope is the average slope obtained
by fitting all the data points to a linear curve, and was
obtained for both {{(6vo)) and o. However, the data points
show clear oscillations in ((§vo)) and o around the curve
of slope a = 1.25, as seen in the inset of Fig. 5. This in-
dicates lack of scaling, and suggests that the exponent «
is not well defined and must be considered as an average
exponent, a = 8 = 1.25 + 0.07.

It is interesting to compare the above observations
{bvo)) ~ R!'?® with expectations based on the Kol-
mogorov theory in one limit, and on the assumption of
laminar flow in the other. The result in both cases is

(6u(£)) = (¢/£0)" (6v (o)) = (¢/£0)"Rv/to , (4)

with v =1 in the laminar case and 1/3 in the Kolmogorov
model. Because the flow is very far from being isotropic
or homogeneous in our Couette cell, one hardly expects
Kolmogorov theory to apply. Nevertheless, in other ex-
periments using a Couette cell of much smaller aspect
ratio than that used here, the exponent v was measured
to be close to 1/3 at large R [7].

Our determination of the dependence of {(6vg)) on R
is a robust one in the sense that it was extracted from
the measurement of thousands of correlation functions
(measured at various values of y). The data are clearly
inconsistent with @ = 1.0, and show lack of scaling with
an effective exponent oscillating around o = 1.25.

Next, consider how the measured values of (6v(¥,y))
vary with £ at a fixed value of y = 5 cm. Here the sim-
plified notation (6v(£,y = 5 cm)) = (6v(£)) is used. The
goal here is to see if the measurements are consistent with
Eq. (4). Figure 6 is a log,g-log;o plot of {(6vo(£))) as a
function of the normalized slit width, £ for several val-
ues of R/R., namely 10.2 (closed circles), 20.5 (crosses),
and 52.0 (open circles). The data points do not lie on
lines of constant slope and are therefore inconsistent with
Eq. (4). Because of spatial coherence effects [13], the
measurements in that figure are most trustworthy at the
smaller values of £. The measurements at the two lowest
values of R are in a regime where a numerical analysis
of the Navier-Stokes equation for Couette flow has been
carried out [15].

The failure of the scaling law, (6vo(£)) ~ £7 can also
be seen in the fact that g(7) does not have the scaling
form given by Eq. (3). Were this scaling to obtain, a
plot of G(g7£") would yield a single curve for all values
of £. Figure 7 is such a plot on a log;,-log,, scale. The
curves shown here correspond to £ ranging from 0.2 mm
to 1.89 mm. The self-similarity of the curves was “best”
when ~ was selected to be 0.7. The measurements shown
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-1.5 -1 -0.5 0] 0.5
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FIG. 6. Characteristic velocity (6vo(£)) as function of slit

width ! at the indicated Reynolds numbers R/R..

here were also made at a height y in the approximate
middle of the cell. For these data, R/R, was 51.9. The
absence of scaling is self-evident. It appears from Fig. 6
that v is approaching zero as ¢ decreases, a result that is
also seen in studies of grid-generated and pipe-generated
turbulent flow [9, 10] and in a study of the velocity field
in Rayleigh-Bénard convection [11]. It is not surprising
that Taylor-Couette flow at R/R. < 100 is not turbulent
in the Kolmogorov sense. What is surprising, however, is
that the curve becomes flat at small length scales. This
interesting finding is inconsistent with all existing theo-
ries of turbulence which predict a linear dependence on
small length scales [8]. The observed £ independence of
(6vo(£)) suggests that there is in the flow a characteristic
length scale n that is smaller than the minimum value of
£ which was attainable in these experiments. We have no
way of measuring 7, and hence no way of determining if
this length scale is correctly identified with the dissipa-
tive length scale appearing in the Kolmogorov theory.

It is important to be sure that the flattening of (6vo(£))
at small length scales is not an experimental artifact aris-
ing from the finite beam diameter d. If d is larger than
the slit width £, measured velocity differences will be gov-
erned by this length rather than £, and (6vo(£)) will ob-
viously become independent of £. To determine if the
flattening of the curves at small £ in Fig. 6 was due to

10g,,G(T)

-6 I 1 L |
-7 -6 -5

l0g,o(T £7)

FIG. 7. The correlation function G(r) as function of T1°7
for different slit widths 0.1, 0.2, 0.42, 0.89, and 1.89 mm. The
Reynolds number is R/R. = 51.9.
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FIG. 8. The dependence of (§vo(l)) on slit width . Curve

a: Expanded beam-beam diameter d = 0.3 mm. Curve b:
Focused beam of diameter d = 0.05 mm. Reynolds number
R/R. = 23.1.

the finite diameter of the laser beam, we deliberately in-
creased d, by a factor 5, to see if the flattening appeared
at a smaller value of ¢. The results appear in Fig. 8,
which is a plot of log;¢(6Vp(€)) vs log,o¥, with £ in mm.
For curve a, d = 0.3 mm; for curve b, d = 0.05 mm. Here
y = 5 cm and R/R, = 23.1, which is in the turbulent-
vortex-flow regime. The vertical shift between the two
curves is due to a small difference in the scattering angle
between curves a and b. The knee in the curves appears
at approximately the same value of £ for both curves, sug-
gesting that the small slope at small £ is not an optical
artifact.

CONCLUSION

Homodyne correlation spectroscopy has been used to
measure spatial inhomogeneities (§v(y,!)) in a Taylor-

Couette cell, on length scales £ much smaller than the
gap width. These measurements have been performed
for R/R. ranging from 1.4 to 91. Even at the highest
achievable values of R, (6v({ = 0.2 mm,y)) oscillates
as a function of vertical position in the cell. These os-
cillations are highly correlated with the large-scale fluc-
tuations observed by visualization techniques. A new
local maximum in the small-scale fluctuations appears
at a Reynolds number close to the onset of chaos. The
amplitude of this spatial inhomogeneity increases with
increasing R far into the turbulent vortex regime.

The height-averaged value ((6v(y))) and its standard
deviation show lack of scaling, but has an average expo-
nent o equal to 1.25. It was not surprising that {(6vo))
fails to scale as a power of R, since the visualization mea-
surements reveal spatial inhomogeniety even at the high-
est values of R/R,.

We also observed a failure of the scaling law (6vg) ~ 17.
At small ¢, (6v(¢,y = 5 cm)) becomes independent of
£, a result that has appeared in homodyne correlation
studies of strongly turbulent flows and Rayleigh-Bénard
convection studies at very high Rayleigh numbers. The
observed independence of (6v(£)) suggests the existence
of a small length scale in the flow which is smaller than
the minimum length scale attainable in this experiment.

ACKNOWLEDGMENTS

We thank Xiao Lun Wu for stimulating discussions.
This work has been supported by the National Science
Foundation, Grant No. DMR-8914351. K.J.M. was also
supported by the Norwegian Council for Science and Hu-
manities (NAVF).

* Present address: Fysisk Institutt, Universitetet i Oslo,
N-0316 Oslo 3, Norway.

[1] H. L. Swinney and J. P. Gollub, Hydrodynamic Instabili-
ties and the Transition to Turbulence, 2nd ed. (Springer-
Verlag, New York, 1985).

[2] E. L. Koschmider, J. Fluid Mech. 93, 515 (1979).

[3] J. P. Gollub and H. L. Swinney, Phys. Rev. Lett. 35, 927
(1975).

[4] P. R. Fenstermacher, H. L. Swinney, and J. P. Gollub, J.
Fluid. Mech. 94, 103 (1979).

[5] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301
(1941); for English translation, see Proc. R. Soc. Lon-
don Ser. A 434, 9 (1991).

(6] H. Tennekes, A First Course in Turbulence (MIT Press,
Cambridge, MA, 1972).

[7] P. Tong, W. I. Goldburg, and J. S. Huang, Phys Rev. A

45, 7231 (1992).

(8] L. Landau and E. M. Lifshitz, Fluid Mechanics (Perga-
mon, New York, 1987).
[9] P. Tong, W. 1. Goldburg, C. K. Chan, and A. Sirivat,
Phys. Rev. A 37, 2125 (1988).
[10] H. K. Pak, W. I. Goldburg, and A. Sirivat, Fluid Dy-
namics Research, 8, 19 (1991).
[11] P. Tong and Y. Shen, Phys. Rev. Lett. 69, 2066 (1992).
[12] M. Gorman and H. L. Swinney, J. Fluid Mech. 117, 123
(1982).
[13] K. J. Malgy, W. 1. Goldburg, and H. K. Pak, Phys. Rev.
A 46, 3288 (1992).
[14] E. Jakeman, C. J. Oliver, and E. R. Pike, J. Phys. A 3,
L45 (1970).
[15] P. S. Marcus, J. Fluid Mech. 146, 45 (1984); 146, 65
(1984).



FIG. 1. Flow pattern observed in a
Taylor-Couette cell with the inner cylinder
rotating at different Reynolds numbers R/R.
ranging from 1.34 to 96.4.
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